grunlan-pubs
/in Uncategorized/by Academic Web PagesSilicone-containing thermoresponsive membranes to form an optical glucose biosensor
Dong, P.; Singh, K.A.; Soltes, A.M.; Ko, B.K.; Gahararwar, A.K.; McShane, M.J.; Grunlan, M.A. “Silicone-containing thermoresponsive membranes to form an optical glucose biosensor,” J. Mater. Chem. B, 2022, 10, 6118-6132.
Characterizing the separation behavior of photocurable PDMS on a hydrogel film during VAT photopolymerization: A benchmark study
Yang, F.; Kazi, A.; Marmo, A.C.; Grunlan, M.A.; Tai, B.L. “Characterizing the separation behavior of photocurable PDMS on a hydrogel film during VAT photopolymerization: A benchmark study,” Additive Manuf. 2022, 58, 103070.
Amphiphilic silicones to mitigate lens epithelial cell growth onto intraocular lenses
Marmo, A.C.; Rodriguez Cruz, J.J.; Pickett, J.H.; Lott, L.R.; Theibert, D.S.; Chandler, H.; Grunlan, M.A. “Amphiphilic silicones to mitigate lens epithelial cell growth onto intraocular lenses,” J. Mater. Chem. B, 2022, 10, 3064-3072.
A glucose biosensor based on phosphorescence lifetime sensing and a thermoresponsive membrane
Dong, P.; Ko, B.K.; Lomeli, K.A.; Clark, E.C.; McShane, M.J.; Grunlan, M.A. “A glucose biosensor based on phosphorescence lifetime sensing and a thermoresponsive membrane,” Macromol. Rapid Comm., 2022, 2100902.
Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold
Stukel Shah, J.M.; Lundquist, B.; Macaitis, J.; Pfau-Cloud, M.R.; Beltran, F.O.; Grunlan, M.A.; Lien, W.; Wang, H.-C.; Burdette, A.J. “Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold,” J. Biomed. Maters. Res. Part B, 2022, 110, 2063-2074.
PoreScript: Semi-automated pore size algorithm for scaffold characterization
Jenkins, D.; Salhadar, K.; Ashby, G.; Misha, A.; Cheshire, J.; Beltran, F.; Grunlan, M.A.; Andrieux, S.; Stubenrauch, C.; Cosgriff-Hernandez, E.+ “PoreScript: Semi-automated pore size algorithm for scaffold characterization,” Bioactive Mater., 2022, 13, 1-8.
Suitability of EtO sterilization of polydopamine-coated, self-fitting bone scaffolds
Houk, C.J.; Beltran, F.O.; Grunlan, M.A. “Suitability of EtO sterilization of polydopamine-coated, self-fitting bone scaffolds,” Polym. Degrad. Stability, 2021, 194, 109763.
Suitability of EtO sterilization of polydopamine-coated, self-fitting bone scaffolds
Houk, C.J.; Beltran, F.O.; Grunlan, M.A. “Suitability of EtO sterilization of polydopamine-coated, self-fitting bone scaffolds,” Polym. Degrad. Stability, 2021, 194, 109763.
Methodology for performing biomechanical push-out tests for evaluating the osseointegration of calvarial defect repair in small animal models
Lawson, Z.T.; Han, J.; Saunders, W.B.; Grunlan, M.A.; Moreno, M.R.; Robbins, A.B. “Methodology for performing biomechanical push-out tests for evaluating the osseointegration of calvarial defect repair in small animal models,” MethodsX, 2021, 8, 101541.
Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds
Arabiyat, A.A.; Pfau, M.R.; Grunlan, M.A.; Hahn, M.S.“Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds,” J. Biomed. Mater. Res. Part A, 2021, 21, 2334-2345.
Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds
Arabiyat, A.A.; Pfau, M.R.; Grunlan, M.A.; Hahn, M.S.“Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds,” J. Biomed. Mater. Res. Part A, 2021, 21, 2334-2345.
A thin whole blood smear prepared via a pumpless microfluidic
Dogbevi, K.S.; Ngo, B.K.D.; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L. “A thin whole blood smear prepared via a pumpless microfluidic,” Microfluid. Nanofluid., 2021, 25, 59.
Smart scaffolds: Shape memory polymers (SMPs) in tissue engineering
Pfau, M.A.; Grunlan, M.A. “Smart scaffolds: Shape memory polymers (SMPs) in tissue engineering,” J. Mater. Chem. B, 2021, 9, 4287-4297.
Brightfield and fluorescence in-channel staining of thin blood smears generated in pumpless microfluidic
Dogbevi, K.S.; Ngo, B.K.D.; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L. “Brightfield and fluorescence in-channel staining of thin blood smears generated in pumpless microfluidic,” Anal. Methods, 2021, 13, 2238-2247.
Shape memory polymer (SMP) bone scaffolds with improved self-fitting properties
Pfau, M.A.; McKinzey, K.G.; Roth, A.A.; Graul, L.M.; Maitland, D.J.; Grunlan, M.A. “Shape memory polymer (SMP) bone scaffolds with improved self-fitting properties,” J. Mater. Chem. B, 2021, 9, 3286-3837.
Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone
Suriboot, J.; Marmo, A.C.; Ngo, B.K.D.; Nigam, A.; Ortiz-Acosta, D.; Tai, B.L.; Grunlan, M.A. “Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone,” Soft Matter, 2021, 17, 4133-4142.
Bioactive siloxane-containing shape memory polymer (SMP) scaffolds with tunable degradation rates
Beltran, F.O.; Houk, C.X.; Grunlan, M.A. “Bioactive siloxane-containing shape memory polymer (SMP) scaffolds with tunable degradation rates,” ACS Biomater. Sci. Eng. 2021, 7, 1631-1639.
Cartilage-like tribological performance of charged double network hydrogels
Bonyadi, S.; Demott, C.J.; Grunlan, M.A.; Dunn, A.C. “Cartilage-like tribological performance of charged double network hydrogels,” J. Mech. Behav. Biomed. Mater. 2021, 114, 104202.
Amphiphilic silicones to reduce the absorption of small hydrophobic molecules
Quiñones-Pérez, M.; Cieza, R.; Ngo, B.K.D.; Grunlan, M.A.; Domenech, M. “Amphiphilic silicones to reduce the absorption of small hydrophobic molecules,” Acta Biomaterialia, 2021, 121, 339-348.
Enhanced osteogenic potential of phosphonated-siloxane hydrogel scaffolds
Frassica, M.T.; Jones, S.K.; Suriboot, J.; Arabiyat, A.; Ramirez, E.; Hahn, M.S.; Grunlan, M.A. “Enhanced osteogenic potential of phosphonated-siloxane hydrogel scaffolds,” Biomacromolecules, 2020, 21, 5189-5199.
Spatially controlled templated hydrogels for orthopedic interface regeneration
Frassica, M.T.; Demott, C.J.; Ramirez, E.M.; Grunlan, M.A. “Spatially controlled templated hydrogels for orthopedic interface regeneration,” ACS Macro Lett. 2020, 9, 1740-1744.
A comb architecture to control the selective diffusivity of a double network hydrogel
Dong, P.; Schott, B.J.; Means, A.K.; Grunlan, M.A. “A comb architecture to control the selective diffusivity of a double network hydrogel,” ACS Appl. Polym. Mater. 2020, 2, 5269–5277
Thromboresistance of polyurethanes modified with PEO-silane amphiphiles
Ngo, B.K.D.; Lim, K.K.; Johnson, J.C.; Jain, A.; Grunlan, M.A. “Thromboresistance of polyurethanes modified with PEO-silane amphiphiles,” Macromol. Biosci. 2020, 2000193.
Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair
Frassica, M.T.; Grunlan, M.A. “Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair,” ACS Biomater. Sci. Eng., 2020, 6, 4324-4336.
Mechanical isotropy and post-cure shrinkage of polydimethylsiloxane printed with digital light processing
Kim, D.S.; Suriboot, J.; Grunlan, M.A.; Tai, B.L. “Mechanical isotropy and post-cure shrinkage of polydimethylsiloxane printed with digital light processing,” Rapid Prototyping J. 2020, 26, 1447-1452
PCL-based shape memory polymer (SMP) semi-IPNs: The role of miscibility in tuning degradation rate
Pfau, M.R.; McKinzey, K.G.; Roth, A.A; Grunlan, M.A. “PCL-based shape memory polymer (SMP) semi-IPNs: The role of miscibility in tuning degradation rate,” Biomacromolecules, 2020, 6, 2493-2501.
Pumpless, ‘self-driven’ microfluidic channels with controlled blood flow using an amphiphilic silicon
Dogbevi, K.S.; Ngo, B.K.D.; Blake, C.W.; Grunlan, M.A.; Coté, G.L. “Pumpless, ‘self-driven’ microfluidic channels with controlled blood flow using an amphiphilic silicone,” ACS Appl. Polymer. Mater. 2020, 2, 1731-1738.
Thromboresistance of silicones modified with PEO-silane amphiphiles
Ngo, B.K.D.* Barry, M.E.; Lim, K.K.; Johnson, J.C.; Luna, D.J.; Pandian, N.K.R.; Jain, A.; Grunlan, M.A. “Thromboresistance of silicones modified with PEO-silane amphiphiles,” ACS Biomater. Sci. Eng., 2020, 6, 2029-2037.
Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity
Frassica, M.T.; Jones, S.K.; Diaz-Rodriguez, P.; Hahn, M.S.; Grunlan, M.A. “Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity,” Acta Biomaterialia, 2019, 99, 100-109.
Silicone 3D printing with an optically created dead zone
Kim, D.S.; Suriboot, J.; Grunlan, M.A.; Tai, B.L. “Silicone 3D printing with an optically created dead zone,” Addit. Manuf., 2019, 29, 100793.
A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors
Means, A.K.; Dong, P.; Clubb, Jr, F.J.; Friedemann, M.C.; Colvin, L.E.; Shrode, C.A.; Coté, G.L; Grunlan, M.A. “A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors,” J. Mater. Sci. Mater. Med. 2019, 30, 79.
Modern strategies to achieve tissue-mimetic, mechanically robust hydrogels
Means, A.K.; Grunlan, M.A. “Modern strategies to achieve tissue-mimetic, mechanically robust hydrogels,” ACS Macro Lett., 2019, 8, 705-713.
Double network hydrogels that mimic the modulus, strength and lubricity of cartilage
Means, A.K.; Shrode, C.A.; Whitney, L.V.; Ehrhardt, D.A.; Grunlan, M.A. “Double network hydrogels that mimic the modulus, strength and lubricity of cartilage,” Biomacromolecules, 2019, 20, 2034-2042.
Investigating the effect of an antifouling surface modification on the environmental impact of pasteurization process: An LCA study
Zouaghi, S.; Frémiot, J.; André, C.; Grunlan, M.A.; Gruescu, C.; Delaplace, G.; Duquesne, S.; Jimenez, M. “Investigating the effect of an antifouling surface modification on the environmental impact of pasteurization process: An LCA study,” ACS Sustainable Chem. Eng., 2019, 7, 9133-9142.
Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration
Ngo, B.K.D.; Lim, K.K.; Stafslien, S.J.; Grunlan, M.A. “Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration,” Polym. Degrad. Stab., 2019, 163, 136-142.
Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation
Woodard, L.N.; Grunlan, M.A. “Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation,” ACS Biomater. Sci. Eng., 2019, 5, 498-508.
Toward zonally-tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells
Diaz-Rodriguez, P.; Erndt-Marino, J.; Munoz-Pinto, D.J.; Samavedi, S.; Beardon, R.; Grunlan, M.A.; Saunders, W.; Hahn, M.S. “Toward zonally-tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells,” J. Biomed. Mater. Res. Part B: Appl. Biomat., 2019, 107B, 2019-2029.
A layer-by-layer (LbL) approach to retain an optical glucose sensing assay within the cavity of a hydrogel membrane
Locke, A.K.; Means, A.K.; Dong, P.; Nichols, T.J.; Coté, G.L.; Grunlan, M.A. “A layer-by-layer (LbL) approach to retain an optical glucose sensing assay within the cavity of a hydrogel membrane,” ACS Applied Bio Mater., 2018, 1, 1319-1327.
Foreign body reaction to a subcutaneously implanted self-cleaning, thermoresponsive hydrogel membrane for implanted glucose biosensors
Abraham, A.A.; Means, A.K.; Clubb, Jr, F.J.; Fei, R.; Locke, A.K.; Gacasan, E.G.; Coté, G.L; Grunlan, M.A. “Foreign body reaction to a subcutaneously implanted self-cleaning, thermoresponsive hydrogel membrane for implanted glucose biosensors,” ACS Biomater. Sci. Eng., 2018, 4, 4104-4111.
Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel
Zouaghi, S.; Barry, M.E.; Bellayer, S.; Lyskawa, J.; André, C.; Delaplace, G.; Grunlan, M.A.; Jimenez, M. “Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel,” Biofouling, 2018, 34, 769-783.
Hydrolytic degradation and erosion of polyester biomaterials
Woodard, L.N.; Grunlan, M.A.; “Hydrolytic degradation and erosion of polyester biomaterials,” ACS Macro Lett., 2018, 7, 976-982.
A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds
Gharat, T.P.; Diaz-Rodriguez, P.; Erndt-Marino, J.D.; Jimenez Vergara, A.C.; Munoz Pinto, D.J.; Beardon, R.N.; Huggins, S.S.; Grunlan, M.; Saunders, W.B.; Hahn, M.S. “A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds,” J. Biomed. Mater. Res. Part A, 2018, 106, 2382-2393.
Porous poly(caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair
Woodard, L.N.; Kmetz, K.T.; Roth, A.A.; Page, V.M.; Grunlan, M.A. “Porous poly(-caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair,” Biomacromolecules, 2017, 18, 4075-4083.
Thermoresponsive double network hydrogels with exceptional mechanical properties
Means, A.K.; Ehrhardt, D.A.; Whitney, L.V.; Grunlan, M.A. “Thermoresponsive double network hydrogels with exceptional mechanical properties,” Macromol. Rapid Comm., 2017, 38, 1700351-1700357.
Protein resistant polymeric biomaterials
Ngo, B.K.D.; Grunlan, M.A. “Protein resistant polymeric biomaterials,” ACS Macro Lett., 2017, 6, 992-1000.
Anti-protein and anti-bacterial behavior of amphiphilic silicones
Hawkins, M.L.; Schott, S.S.; Grigoryan, B.; Rufin, M.A.; Ngo, B.K.D.; Vanderwal, L.; Stafslien, S.J.; Grunlan, M.A. “Anti-protein and anti-bacterial behavior of amphiphilic silicones,” Polym. Chem., 2017, 8, 5239-5251.
Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds
Gacasan, E.G; Sehnert, R.M.; Ehrhardt, D.A.; Grunlan, M.A.. “Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds,” Macromol. Mater. Eng., 2017, 302, 16000512.
Antifouling silicones based on surface-modifying additive amphiphiles
Rufin, M.A.; Ngo, B.K.D.; Barry, M.E.; Page, V.M.; Hawkins, M.L.; Stafslien, S.J.; Grunlan, M.A.. “Anti-fouling silicones based on surface-modifying additive (SMA) amphiphiles,” Green Mater., 2017, 5, 1-10.
PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties
Woodard, L.N.; Page, V.M.; Kmetz, K.T.; Grunlan, M.A.. “PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties,” Macromol. Rapid Comm., 2016, 37, 1972-1977.
Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone
Rufin, M.A.; Barry, M.A.; Adair, P.A.; Hawkins, M.L.; Raymond, J.E.; Grunlan, M.A.. “Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone,” Acta Biomaterialia, 2016, 41, 247-252.
Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors
Fei, R., Means, A.K., Abraham, A.A.; Locked, A.K.; Coté; G.L.; Grunlan, M.A.. “Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors,” Macromol. Mater. Eng., 2016, 301, 935-943.
Non-toxic, anti-fouling silicones with variable PEO-silane amphiphiles content
Faÿ, F.; Hawkins, M.L.; Réhel, K.; Grunlan, M.A.; Linossier, I. “Non-toxic, anti-fouling silicones with variable PEO-silane amphiphiles content,” Green Mater., 2016, 4, 53-62.
Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams
Erndt-Marino, J.D.; Munoz-Pinto, D.J.; Samavedi, S.; Jimenez-Vergara, A.C.; Woodard, L.; Zhang, D.; Grunlan, M.A..; Hahn, M.S. “Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams,” ACS Biomat. Sci. Eng., 2015, 1, 1220-1230.
Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold
Nail, L.N.; Zhang, D.; Reinhardt, J.; Grunlan, M.A.. “Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold,” J. of Visualized Experiments (JOVE), 2015, 104, e52981.
Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length
Rufin, M.A.; Gruetzner, J.A.; Hurley, M.J.; Hawkins, M.L.; Raymond, E.S.; Raymond, J.E.; Grunlan, M.A. “Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length,” J. Mater. Chem. B. 2015, 3, 2816-2825.
Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites
Yu, Y.-J.; Infanger, S.; Grunlan, M.A.; Maitland, D.J. “Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites,” J. Appl. Polym. Sci. 2015, 132, 41226-41234.
A bioactive “self-fitting” shape memory polymer (SMP) scaffold with potential to treat cranio- maxillofacial (CMF) bone defects
Zhang, D.; George, O.J.; Petersen, K.M.; Jimenez-Vergara, A.C.; Hahn, M.S. Grunlan, M.A. “A bioactive “self-fitting” shape memory polymer (SMP) scaffold with potential to treat cranio- maxillofacial (CMF) bone defects,” Acta Biomaterialia, 2014, 10, 4597-4605.
Thermoresponsive double network micropillared hydrogels for cell release
Fei, R.; Hou, H.; Munoz-Pinto, D.; Han, A.; Hahn, M.S.; Grunlan, M.A. “Thermoresponsive double network micropillared hydrogels for cell release” Macromol. Biosci.; 2014, 14, 1346-1352.
Direct observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile
Hawkins, M.L.; Rufin, M.A.; Raymond, J.E.; Grunlan, M.A. “Direct observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile,” J. Mater. Chem. Part B, 2014, 2, 5689-5697.
Bacteria and diatom resistance of silicone modified with PEO-silane amphiphiles
Hawkins, M.L.; Fav, F.; E. Cheverau; Linossier, I.; Grunlan, M.A.“Bacteria and diatom resistance of silicone modified with PEO-silane amphiphiles,” Biofouling, 2014, 30, 247-258.
A self-cleaning membrane to extend the lifetime of an implanted glucose biosensor
Abraham, A.A.; Fei, R.; Coté, G.L.; Grunlan, M.A. “A self-cleaning membrane to extend the lifetime of an implanted glucose biosensor,” ACS Appl. Mater. & Interfaces, 2013, 5, 12832-12838.
Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue engineering
Bailey, B.M.; Nail, L.N.; Grunlan, M.A. “Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue engineering,” Acta Biomaterialia, 2013, 9, 8254-8261.
Ultra strong thermoresponsive hydrogels
Fei, R.; George, J.T.; Means, A.K.; Grunlan, M.A. “Ultra strong thermoresponsive hydrogels,” Soft Matter. 2013, 9, 2912-2919.
PDMS-PCL shape memory polymer (SMP) foams
Zhang, D.; Petersen, K.M.; Grunlan, M.A. “PDMS-PCL shape memory polymer (SMP) foams,” ACS Appl. Mater. & Interfaces. 2012, 5, 186-191.
PDMSstar-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds
Bailey, B.M.; Fei, R.; Munoz-Pinto, D.; Hahn, M.S.; Grunlan, M.A. “PDMSstar-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds,” Acta Biomaterialia, 2012, 8, 4324-4333.
An approach for assessing hydrogel hydrophobicity
Munoz-Pinto, D.; Grigoryan, B.; Long, J.; Grunlan, M.A.; Hahn, M.S. “An approach for assessing hydrogel hydrophobicity,” J. Biomed. Mater. Res. Part A, 2012, 100, 2855-2860.
Protein resistance of silicones prepared with a PEO-silane amphiphile
Hawkins, M.L.; Grunlan, M.A. “Protein resistance of silicones prepared with a PEO-silane amphiphile,” J. Mater. Chem. 2012, 22, 19540-19546.
Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels
Munoz-Pinto, D.; Jimenez-Vergara, A.; Hou, Y.; Hayenga, H.N., Grunlan, M.A.; Hahn, M.S. “Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels,” Tissue Eng. Part A 2012, 18, 1710-1719.
Porous inorganic-organic shape memory polymers
Zhang, D.; Burkes, W.L.; Schoener, C.A.; Grunlan, M.A. “Porous inorganic-organic shape memory polymers,” Polymer 2012, 53, 2935-2941.
Thermoresponsive nanocomposite double network nanocomposite hydrogels
Fei, R.; George, J.T.; Park, J., Grunlan, M.A. “Thermoresponsive nanocomposite double network nanocomposite hydrogels,” Soft Matter 2012, 8, 481-487.
Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)
Bailey, B.M.; Hui, V.; Fei, R., Grunlan, M.A. “Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS),” J. Mater. Chem. 2011, 21, 18776-18782.
Thermoresponsive nanocomposite hydrogels with cell-releasing behavior
Hou, Y.; Matthews, A.R.; Smitherman, A.M.; Bulick, A.S.; Hahn, M.S.; Hou, H.; Han, A.; Grunlan, M.A. “Thermoresponsive nanocomposite hydrogels with cell-releasing behavior,” Biomaterials 2008, 29, 3175-3184.
Polycaprolactone-based shape memory polymers with variable polydimethylsiloxane soft segments
Zhang, D.; Giese, M.L.; Prukop, S.L.; Grunlan, M.A. “Polycaprolactone-based shape memory polymers with variable polydimethylsiloxane soft segments,” J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 754-761.
Amphiphilic silicones prepared with branched PEO-silanes with siloxane tethers
Murthy, R.; Bailey, B.M.; Valentin-Rodriguez, C.; Ivanisevic, A.; Grunlan, M.A. “Amphiphilic silicones prepared with branched PEO-silanes with siloxane tethers,” J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 4108-4119.
Micropatterning of poly(N-isopropylacrylamide) PNIPAAm hydrogels: Effects of thermosensitivity and cell release behavior
Hou, H.; Hou, Y.; Grunlan, M.A.; Munoz-Pinto, D.J.; Hahn, M.S.; Han, A. “Micropatterning of poly(N-isopropylacrylamide) PNIPAAm hydrogels: Effects of thermosensitivity and cell release behavior,” Sensors and Material, 2010, 22, 109-120.
Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors
Gant, R.; Abraham, A.; Hou, Y.; Grunlan, M.A.; Coté, G.L. “Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors,” Acta Biomaterialia, 2010, 6, 2903-2910.
Inorganic-organic hybrid scaffolds for osteochondral regeneration
Munoz-Pinto, D.J.; McMahon, R.E.; Kanzelberger, M.A.; Jimenez-Vergara, A.C.; Grunlan, M.A.; Hahn, M.S. “Inorganic-organic hybrid scaffolds for osteochondral regeneration,” J. Biomed. Mater. Res. Part A, 2010, 94, 112-121.
Photo-crosslinked PEO-PDMSstar hydrogels: Synthesis, characterization, and potential application for tissue engineering scaffolds
Hou, Y.; Schoener, C.A.; Regan, K.R.; Munoz-Pinto, D.; Hahn, M.S.; Grunlan, M.A. “Photo-crosslinked PEO-PDMSstar hydrogels: Synthesis, characterization, and potential application for tissue engineering scaffolds,” Biomacromolecules 2010, 11, 648-656.
Shape memory polymers with silicon-containing segments
Schoener, C.A.; Weyand, C.B.; Murthy, R.M.; Grunlan, M.A. “Shape memory polymers with silicon-containing segments,” J. Mater. Chem. 2010, 20, 1787-1793.
A thermoresponsive hydrogel poly(N-isopropylacrylamide) micropatterning method using microfluidics techniques
Hou, H.; Kim, W.; Grunlan, M.; Han, A. “A thermoresponsive hydrogel poly(N-isopropylacrylamide) micropatterning method using microfluidics techniques,” J. Micromech. Microeng. 2009, 19, 127001-127007.
Development of a self-cleaning sensor membrane for implantable biosensors
Gant, R.; Hou, Y.; Grunlan, M.A., Coté, G.L. “Development of a self-cleaning sensor membrane for implantable biosensors,” J. Biomed. Mater. Res. 2009, 90A, 695-701.
Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina
Pierce, L.M.; Grunlan, M.A.; Hou Y.; Baumann, S.S.; Kuehl, T.J.; Muir, T.W. “Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina,” Am. J. Obstet. Gynecol. 2009, 200, 549.e1-e8.
The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption
Murthy, R.; Shell, C.E.; Grunlan, M.A. “The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption” Biomaterials 2009, 30, 2433-2439.
Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production
Hahn, M.S.; Liao, H; Munoz-Pinto, D.; Xin, Q.; Hou, Y.; Grunlan, M.A.; “Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production,” Acta Biomaterialia 2008, 4, 1161-1171.
Thermoresponsive nanocomposite hydrogels with cell-releasing behavior
Hou, Y.; Matthews, A.R.; Smitherman, A.M.; Bulick, A.S.; Hahn, M.S.; Hou, H.; Han, A.; Grunlan, M.A. “Thermoresponsive nanocomposite hydrogels with cell-releasing behavior,” Biomaterials 2008, 29, 3175-3184.
Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers
Murthy, R.; Cox, C.D.; Hahn, M.S.; Grunlan, M.A. “Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers,” Biomacromolecules 2007, 8, 3244-3252.